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Abstract. Modeling user behaviors as sequences provides key advan-
tages in predicting future user actions for personalized recommendation.
To utilize sequential user behaviors effectively, traditional methods usu-
ally depend on the premise of Markov processes, and recurrent neural
networks (RNNs) have been adopted to leverage their power in mod-
eling sequences recently. In this paper, we design a network featuring
Attention with Long-term Interval-based Gated Recurrent Units (ALI-
GRU) to model temporal sequences of user actions. Compared to the
existing methods, our network utilizes the time interval-based GRU in
addition to normal GRU to exploit the temporal dimension when en-
coding user actions, and has a specially designed matrix-form attention
function to characterize both long-term preferences and short-term in-
tents of users. The attention-weighted features are finally decoded to pre-
dict the next user action. We have performed experiments on well-known
public datasets. Experimental results show that the proposed ALI-GRU
achieves significant improvement than state-of-the-art RNN-based meth-
ods.

Keywords: Attention Mechanism · Recurrent Neural Networks · User
Modeling.

1 Introduction

Traditional personalized recommendation methods, such as item to item collab-
orative filtering did not consider the dynamics of user behaviors. For example,
to predict user’s next action such as the next product to purchase, the profil-
ing of both long-term preferences and short-term intents of user are required.
Therefore, modeling the user’s behaviors as sequences provides key advantages.
Nonetheless, modeling sequential user behaviors raises even more challenges than
modeling them without the temporal dimension. How to identify the correlation
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and dependence among actions is one of the difficult issues. Recently, many dif-
ferent kinds of RNN algorithms have been proposed for modeling user behaviors
to leverage their powerful descriptive ability for sequential data [6, 9]. However,
there are several limitations that make it difficult to apply these methods into the
wide variety of applications in the real-world. One inherent assumption of these
methods is that the importance of historical behaviors decreases over time, which
is also the intrinsic property of RNN cells such as gated recurrent units (GRU)
and long- and short-term memory (LSTM). This assumption does not always ap-
ply in practice, where the sequences may have complex cross-dependence. In this
paper, we propose a network featuring Attention with Long-term Interval-based
Gated Recurrent Units (ALI-GRU) for modeling sequential user behaviors to
predict user’s next action. We adopt a series of bi-directional GRU to process the
sequence of items that user had accessed. The GRU cells in our network consist
of time interval-based GRU, where the latter is to reflect the short-term infor-
mation of time intervals. In addition, the features extracted by bi-directional
GRU are used to drive an attention model, where the attention distribution is
calculated at each timestamp. We have performed a series of experiments using
well-known public datasets. Experimental results show that ALI-GRU outper-
forms the state-of-the-art methods by a significant margin.

2 Related Work

The related work is given at two aspects, modeling of sequential user behaviors
and attention mechanism.

Modeling Sequential User Behaviors Due to the significance to user-
centric tasks such as personalized search and recommendation, modeling se-
quential user behaviors has attracted great attention from both industry and
academia. Most of pioneering work relies on model-based Collaborative Filtering
(CF) to analyze user-item interaction matrix. For the task of sequential recom-
mendation, Rendle et al. [11] propose Factorizing Personalized Markov Chain
to combine matrix factorization of user-item matrix with Markov chains. He et
al. [4] further integrate similarity-based methods [8] into FPMC to tackle the
problem of sequential dynamics. But the major problems are that these meth-
ods independently combine several components, rely on low-level hand-crafted
features of user or item, and have difficulty to handle long-term behaviors. To
the contrary, with the success of recurrent neural networks (RNNs) in the past
few years, a paucity of work has made attempts to utilize RNNs [5]. The insight
that RNN-based solutions achieve success in modeling sequential user behaviors
is that the well demonstrated ability of RNN in capturing patterns in the se-
quential data. Recent studies [10, 15, 12] also indicate that time intervals within
sequential signal are a very important clue to update and forget information in
RNN architecture. But in practice, there is complex dependence and correlation
between sequential user behaviors, which requires deeper analysis of relation
among behaviors rather than simply modeling the presence, order and time in-
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tervals. To summarize, how to design an effective RNN architecture to model
sequential user behaviors effectively is still a challenging open problem.

Attention Mechanism The success of attention mechanism is mainly due
to the reasonable assumption that human beings do not tend to process the entire
signal at once, but only focus on selected portions of the entire perception space
when and where needed [7]. Recent researches start to leverage different atten-
tion architectures to improve performance of related tasks. For example, Yang
et al. [14] propose a hierarchical attention network at word and sentence level,
respectively, to capture contributions of different parts of a document. Vaswani
et al. [13] utilize multi-head attention mechanism to improve performance. Nev-
ertheless, most of previous work calculates attention distribution according to
the interaction of every source vector with a single embedding vector of con-
textual or historical information, which may lead to information loss caused by
early summarization, and noise caused by incorrect previous attention.

Indeed, the attention mechanism is very sound for the task of modeling se-
quential user behaviors. However, to the best of our knowledge, there is few work
concentrating on this paradigm, except a recent study [1], which considers the
attention mechanism into a multimedia recommendation task with multilayer
perceptron. An effective solution with attention mechanism for better modeling
sequential user behaviors is to be investigated in this paper.

3 ALI-GRU

We start our discussion with some definition of notations. Let U be a set of
users and I be a set of items in a specific service such as products in online
shopping websites. For each user u ∈ U , his/her historical behaviors are given
by Hu = {(iuk , tuk)|iuk ∈ I, tuk ∈ R+, k = 1, 2, . . . , Nu}, where (iuk , t

u
k) denotes

the interaction between user u and item iuk at time tuk , interaction has different
forms in different services, such as clicking, browsing, adding to favorites, etc.
The objective of modeling sequential user behaviors is to predict the conditional
probability of the user’s next action p(iuNu+1|Hu, tuNu+1) for a certain given user
u.

As illustrated in the left part of Fig. 1, our designed network features an at-
tention mechanism with long-term interval-based gated recurrent units for mod-
eling sequential user behaviors. This network architecture takes the sequence of
items as raw signal. There are four stages in our network. The embedding layer
maps items to a vector space to extract their basic features. The bi-directional
GRU layer is designed to capture the information of both long-term preferences
and short-term intents of user, it consists of normal GRUs and time interval-
based GRUs. The attention function layer reflects our carefully designed atten-
tion mechanism, which is illustrated in the right part of Fig. 1. Finally, there is
an output layer to integrate the attention distribution and the extracted sequen-
tial features, and utilize normal GRUs to predict the conditional probability of
next item.
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Fig. 1. (Best view in color). The proposed framework for modeling sequential user
behaviors (left) and the designed attention mechanism (right).

Bi-directional GRU Layer with Time-GRU. This layer is designed to
extract driven signals from input sequence and to refine the long-term memory
by contextual cues. We propose a network structure with time-GRU to extract
short-term dynamics of user intents as driven signal of the attention function.

The structure of time-GRU is different from the normal GRU. For the input
IN , the normal GRU computes linear interpolation between the last state hN−1

and the candidate activation h̃N ,

hN = (1− zN )� hN−1 + zN � h̃N (1)

where � is an element-wise multiplication.
Since GRU is originally designed for NLP tasks, there is no consideration of

time intervals within inputs. To include the short-term information, we augment
the normal GRU with a time gate TN

TN =σ(Wt4tN + UtIN + bt)

s.t. Wt < 0
(2)

where 4tN is the time interval between adjacent actions. The constraint Wt < 0
is to utilize the simple assumption that smaller time interval indicates larger
correlation. Moreover, we generate a time-dependent hidden state htN in addition
to the normal hidden state hN , i.e.

htN = (1− zN � TN )� htN−1 + zN � TN � h̃tN (3)

where we utilize the time gate as a filter to modify the update gate zN so as to
capture short-term information more effectively.

In addition, to utilize contextual cues to extract long-term information, we
propose to combine the output of forward normal GRU (hN in Eq. (1)) with all
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the outputs of backward GRU at different steps (the output of backward GRU

at step k is denoted by
←−
h k in Fig. 1). Specifically, we produce concatenated

vectors [hN−1,
←−
h N−1], [hN−1,

←−
h N−2], . . . , [hN−1,

←−
h 1], as shown in the right part

of Fig. 1, where [, ] stands for concatenation of vectors. This design effectively
captures the contextual cues as much as possible.

Attention Function Layer. Unlike previous attention mechanisms, we do
not simply summarize the contextual long-term information into individual fea-
ture vectors. We design to attend the driven signals at each time step along with
the embedding of contextual cues.

Specifically, as shown in the right part of Fig. 1, we use Hk = [hN−1,
←−
h k] ∈

R2d, k = 1, 2, . . . , N − 1, where d is the dimension of GRU states, to represent
the contextual long-term information. htk ∈ Rd denotes the short-term intent
reflected by item ik. We then construct an attention matrix A ∈ R(N−1)∗(N−1),
whose elements are calculated by

Aij = α(Hi, h
t
j) ∈ R (4)

where the attention weight

α(Hi, h
t
j) = vT tanh(WaHi + Uah

t
j) (5)

is adopted to encode the two input vectors. There is a pooling layer along the
direction of long-term information, and then a softmax layer to normalize the
attention weights of each driven signal. Let ak be the normalized weight on htk,

then the attended short-term intent vector is ĥtk = akh
t
k ∈ Rd. At last, we use

g(ik, ĥ
t
k) = [ik, ĥ

t
k, |ik− ĥtk|, ik� ĥtk] ∈ R4d as the output to the next layer, where

ik is the embedded vector of the item at the k-th step.
Our carefully designed attention mechanism described above is to reduce

the loss of contextual information caused by early summarization. Furthermore,
since driven signals are attended to the long-term information at different steps,
the attentions can obtain the trending change of user’s preferences, being more
robust and less affected by the noise in the historical actions.

4 Experiments

To verify the performance of ALI-GRU, we conduct a series of experiments
on two well-known public datasets (LastFM4 and CiteULike5). We compare
ALI-GRU with the following state-of-the-art approaches for performance evalu-
ation: Basic GRU/Basic LSTM [2],Session RNN [5],Time-LSTM [15].
All RNN-based models are implemented with TensorFlow. Training was done on
a single GeForce Tesla P40 GPU with 8 GB graphical memory.

In this experiment, we use the datasets as adopted in [15], i.e. LastFM (987
users and 5000 items with 818767 interactions) and CiteULike (1625 users and

4 http://www.dtic.upf.edu/∼ocelma/MusicRecommendationDataset/lastfm-1K.html
5 http://www.citeulike.org/faq/data.adp
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5000 items with 35834 interactions). Both datasets can be formulated as a series
of tuples <user id, item id, timestamp>. Our target is to recommend songs in
LastFM and papers in CiteULike for users according to their historical behaviors.

For the fair of comparison, we follow the segmentation of training set and
test set in [15]. Specifically, 80% users are randomly selected for training. The
remaining users are for testing. For each test user u with k historical behaviors,
there are k−1 test cases, where the k-th test case is to perform recommendations
at time tuk+1 given the user’s previous k actions, and the ground-truth is iuk+1.
The recommendation can also be regarded as a multi-class classification problem.

We use one-hot representations of items as inputs to the network, and one
fully-connected layer with 8 nodes for embedding. The length of hidden states
of GRU-related layers including both normal GRU and Time-GRU is 16. A
softmax function is used to generate the probability prediction of next items.
For training, we use the AdaGrad [3] optimizer, which is a variant of Stochastic
Gradient Descent (SGD). Parameters for training are minibatch size of 16 and
initial learning rate of 0.001 for all layers. The training process takes about 8
hours.

Table 1. Recall@10 Comparison Results on LastFM & CiteULike

LastFM CiteULike

Basic-LSTM 0.2451 0.6824

Session-RNN 0.3405 0.7129

Time-LSTM 0.3990 0.7586

ALI-GRU 0.4752 0.7764

In the test stage, we use Recall@10 to measure whether the ground-truth
item is in the recommendation list. The results of sequential recommendation
tasks on LastFM and CiteULike are shown in Table. 1. It can be observed that
our approach performs the best on both LastFM and CiteULike for all metrics,
which demonstrates the effectiveness of our proposed ALI-GRU. Specifically,
ALI-GRU obtains significant improvement over Time-LSTM, which is the best
baseline, averagely by 10.7% for Recall@10. It owes to the superiority of intro-
ducing attention mechanism into RNN-based methods especially in capturing
the contribution of each historical action.

Performance of Cold-start. Cold-start refers to the lacking of enough
historical data for a specific user, which often decreases the efficiency of making
recommendations. We analyze the influence of cold-start on the LastFM dataset
and the results are given in Fig. 2. In this figure, test cases are separately counted
for different numbers of historical actions, small number refers to cold-start. We
can observe that for cold users with only 5 actions, ALI-GRU performs slightly
worse than the state-of-the-art methods. This is because that ALI-GRU considers
short-term information as driven signals, which averages source signal to some
extent and leads to less accurate modeling for cold users. Along with the increase
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of historical actions, ALI-GRU achieves significantly better performance than the
baselines, which indicates that bi-directional GRU and attention mechanism can
better model the long-term preferences for making recommendations.
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Fig. 2. Recall@10 evaluated on different indexes of users’ test cases in LastFM.

5 Conclusions

In this paper, we propose to integrate a matrix-form attention mechanism into
RNNs for better modeling sequential user behaviors. Specifically, we design a net-
work featuring Attention with Long-term Interval-based Gated Recurrent Units
to model temporal sequences of user actions, and using a Time-GRU structure
to capture both long-term preferences and short-term intents of users as driven
signals for better robustness. The empirical evaluations on two public datasets
for sequential recommendation task show that our proposed approach achieves
better performance than several state-of-the-art RNN-based solutions. One limi-
tation of this work is the lack of user profiling in providing personalized content,
which will be addressed in our future work.

Acknowledgment

This work was partly supported by the National Key Research and Develop-
ment Program of China under No. 2018YFB0804102, NSFC under No. 61772466,
U1936215, and U1836202, the Zhejiang Provincial Natural Science Foundation
for Distinguished Young Scholars under No. LR19F020003, the Provincial Key
Research and Development Program of Zhejiang, China under No. 2019C01055,
the Ant Financial Research Funding, the Alibaba-ZJU Joint Research Institute
of Frontier Technologies and Zhejiang Lab under No. 2019KE0AB01.



8 Authors Suppressed Due to Excessive Length

References

1. Chen, J., Zhang, H., He, X., Nie, L., Liu, W., Chua, T.: Attentive collaborative
filtering: multimedia recommendation with reature- and item-level attention. In:
Proceedings of the 40th International ACM SIGIR conference on Research and
Development in Information Retrieval. pp. 335–344. ACM (2017)

2. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recur-
rent neural networks on sequence modeling. In: NIPS Workshop on Deep Learning.
MIT Press (2014)

3. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learn-
ing and stochastic optimization. In: Journal of Machine Learning Research. p.
2121–2159. ACM (February 2011)

4. He, R., McAuley, J.: Fusing similarity models with markov chains for sparse se-
quential recommendation. In: International Conference on Data Mining (ICDM).
pp. 191–200. IEEE (2016)

5. Hidasi, B., Karatzoglou, A., Baltrunas, L., Tikk, D.: Session-based recommenda-
tions with recurrent neural networks. In: International Conference on Learning
Representations. IEEE (2016)

6. Hidasi, B., Karatzoglou, A.: Recurrent neural networks with top-k gains for session-
based recommendations. In: Proceedings of the 27th ACM International Confer-
ence on Information and Knowledge Management. pp. 843–852 (2018)

7. Hubner, R., Steinhauser, M., Lehle, C.: A dual-stage two-phase model of selective
attention. In: Psychological Review. pp. 759–784. APA (July 2010)

8. Kabbur, S., Ning, X., Karypis, G.: Fism: factored item similarity models for top-n
recommender systems. In: Proceedings of the 19th ACM SIGKDD international
conference on Knowledge discovery and data mining. pp. 659–667. ACM (2013)

9. Liu, Q., Wu, S., Wang, L.: Multi-behavioral sequential prediction with recurrent
log-bilinear model. In: Transactions on Knowledge and Data Engineering. pp. 1254–
1267. IEEE (June 2017)

10. Neil, D., Preiffer, M., Liu, S.: Phased lstm: accelerating recurrent network training
for long or event-based sequences. In: Advances in neural information processing
systems (NIPS). pp. 3882–3890. MIT Press (2016)

11. Rendle, S., Freudenthaler, C., Schmidt-Thieme, L.: Factorizing personalized
markov chains for next-basket recommendation. In: Proceedings of the 19th In-
ternational Conference on World Wide Web. pp. 811–820. ACM (2010)

12. Vassøy, B., Ruocco, M., de Souza da Silva, E., Aune, E.: Time is of the essence:
A joint hierarchical rnn and point process model for time and item predictions.
In: Proceedings of the Twelfth ACM International Conference on Web Search and
Data Mining. pp. 591–599 (2019)

13. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
L., Polosukhin, I.: Attention is all you need. In: Advances in neural information
processing systems. pp. 5998–6008 (2017)

14. Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., Hovy, E.: Hierarchical attention
networks for document classification. In: The 2016 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language
Technologies (NAACL). pp. 1480–1489. NAACL (2016)

15. Zhu, Y., Li, H., Liao, Y., Wang, B., Guan, Z., Liu, H., Cai, D.: What to do next:
modeling user behaviors by time-lstm. In: Proceedings of the 26th International
Joint Conference on Artificial Intelligence. pp. 3602–3608. AAAI Press (2017)


